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Two desynchronous parametrically excited chaos pendulums demonstrate a
type of hyperchaotic behavior. This paper presents a periodic feedback scheme
to synchronize the two pendulum subsystems. The synchronization principle is
investigated. Feedback control parameters are discussed. The synchronous
parameter intervals in which the maximum transverse Lyapunov exponent
is negative guarantee the achievement of synchronization. Two originally
unrelated tumbling chaos pendulums can be synchronized by this method in the
intervals.
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1. INTRODUCTION

The parametrically excited pendulum is used to model the behavior of many
engineering systems, such as offshore platforms, buildings in earthquakes etc. Its
study has been widely studied [1±3]. Many complex phenomena of this kind of
non-linear dynamic system have been demonstrated. The different chaotic
motions and their respective stable zones in parameter space have been described
in numerical calculations and experiments, which lead to a rich ®eld for the
research of parametrically excited pendulums. However, when the synchronous
motion of two uncoupled pendulums with different initial conditions is
considered, such chaotic dynamic behavior exhibits the instinct dif®culty.
Known as the ``butter¯y effect'' [4], the sensitive dependence on initial conditions
means that any error of initial conditions increases exponentially and leads to a
remarkably different result. The pseudo random motion of multiple pendulums
demonstrates extremely complex hyperchaotic behavior. How to synchronize
more than one chaos pendulums becomes puzzling and interesting.
Since Pecora and Carroll proposed their method of synchronizing chaos [5],

theoretical as well as experimental research has been carried out in a variety of
non-linear dynamic systems. Chaos synchronization makes it possible to
synchronize two chaotic systems previously considered impossible. It has widely
aroused research in the light of potential applications [6±8]. In this paper, the
synchronization of tumbling chaos [1] of two parametrically excited pendulums
by the feedback synchronization method is realized. Here, the feedback is
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designed to periodically impose on one pendulum. With the values of the
normalized periodic factor and the feedback weight in the synchronous
parameter intervals, the ``parametrically excited hyperchaos pendulums system''
(PEHPS) consisting of two unrelated tumbling chaotic motions will consistently
converge to a single chaotic behavior. By chaos synchronization, one brings two
chaos pendulums into step. What follows is the discussion of the synchronous
parameter intervals.

2. SYNCHRONIZATION PRINCIPLE

The systems under consideration are illustrated in Figure 1, where pendulums
A, B correspond to the drive system and the response system respectively. They
are connected through the variable feedback. The normalized dynamics of the
systems can be described as:
drive pendulum:

�yd � b _yd � �1� p cos�ot�� sin�yd� � 0, �1�
response pendulum:

�yr � b _yr � �1� p cos�ot�� sin�yr� � K�t�, �2�
and

K�t� � 0, t0 � n�t1 � t2� < t < t0 � n�t1 � t2� � t1, n � 0, 1 � � �
MF�yd ÿ yr, _yd ÿ _yr�, t0 � n�t1 � t2� � t1 < t < t0 � �n� 1��t1 � t2�

� �
,

�3�
where t0 is the initial time, and yd, yr are the angular displacements of the drive
and response systems respectively. The periodic force p cos(ot) and the damping
coef®cient b are selected to represent the same experimental conditions of two
pendulums. K(t) is the feedback control function. M is feedback weight matrix.
F(ydÿ yr, _yd ÿ _yr) is feedback function matrix. Here, the feedback is added
periodically. t1 denotes the interval where two pendulums are uncoupled while t2
denotes the interval where feedback is active. In order to discuss the

Figure 1. The Schematic diagram of synchronizing parametrically excited pendulums by the
periodic feedback synchronization scheme.
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synchronization principle generally, one de®nes the normalized periodic factor as
D=(t1+ t2)/t2.
It has been found that the values of the parameters p and o can lead to a

number of different types of dynamic behavior for a single pendulum [3]. Within
the parameter zone p=2, o=2, b=0�1 of tumbling chaos, the pendulum
demonstrates a kind of irregular clockwise rotation and random changing in the

rotational direction. The phase portrait associated with this kind of motion is
shown in Figure 2(a) and the chaotic attractor is given in Figure 2(b). Figure
2(c) shows the noise-like power spectrum of tumbling chaos of the drive

pendulum, where some resonant frequency components embedded in a
broadband ``noise'' spectrum can be seen. By the calculation of the time
evolution of the Lyapunov exponents in Figure 2(d), one can describe

quantitatively the dynamical behavior of the pendulum. Lyapunov exponents
describe the average exponent rate of divergence or convergence of perturbations
in phase space. Any system containing at least one positive Lyapunov exponent

is de®ned to be chaotic. Here the temporal convergence of the maximum
Lyapunov exponent l1=0�25 means that the ``random'' rotation and oscillation
behavior of the pendulum is tumbling chaos. At this time, if the feedback weight

M=0, then any uncertainty of the initial conditions of two uncoupled
pendulums will be ampli®ed exponentially. The angle divergence makes it
impossible to synchronize the tumbling chaos motions of two pendulums. Figure

3(a) shows the time evolution of the angle displacements yr, yd, where the slight
different initial conditions have been taken as yr(0)=0�01, yd(0)=0�011,
_yr�0� � 0; _yd�0� � 0. However, after several drive periods T=2p/o, they lead to

the remarkably different results. Meanwhile, since two tumbling chaos
pendulums cannot be synchronized, there must exist two positive Lyapunov
exponents. This pendulum system with two positive Lyapunov exponents was

called the ``parametrically excited hyperchaos pendulums system'' (PEHPS).
Figures 3(b) and (c) show the complex behavior of this kind of hyperchaotic
attractor.

Chaos synchronization means that if the trajectories are located in the
synchronization manifold, trajectories of the chaotic systems (2) will converge to
the attractor of equation (1) and yr= yd, _yr � _yd. In order to synchronize two

chaos pendulums, one considers the feedback synchronization method. The
right-side of equation (2) is driven by the feedback control function K(t). With
the coupled systems, the spectrum of Lyapunov exponents can be divided into

two subsets lsi and lsi �i � 1, 2�, which are within the synchronization manifold
and transverse to synchronization manifold respectively [9]. The ®rst one
describing the evolution of perturbations along the synchronization manifold is

associated with the drive pendulum. The second one describes the perturbation
transverse to the synchronization manifold. If two chaotic systems are not
synchronous, there is at least one positive transverse Lyapunov exponent. Then

any slight perturbations along the transverse direction will be quickly ampli®ed
so that the limit set is no longer restricted to the synchronization manifold, and
trajectories will wander in a high-dimensional phase space of the hyperchaotic
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attractor. Thus the synchronization problem is to let the maximum transverse
Lyapunov exponent ltmax < 0.
Since feedback control function is arbitrary, it can lead to many types of

feedback schemes of chaos synchronization. Pyragas had proposed the method
of small time continuous feedback [10]. The feedback control function K(t) was
taken as the continuous function. However, with discontinuous feedback, how to
synchronize chaos is also interesting. In this paper, a periodic feedback scheme is
suggested. In some intervals, feedback is active; while in some other intervals
two chaotic systems are uncoupled. The normalized periodic factor D is variable.
Feedback weight and function matrix are selected to be

M � �M1, M2� and F�yd ÿ yr, _yd ÿ _yr� � yd ÿ yr
_yd ÿ _yr

� �
respectively. The response chaos pendulum is driven by the feedback control
force that is proportional to the differences of the angular displacements or
angular velocities of two pendulums. With the values of the feedback weight as
well as the normalized factor D in the synchronous parameter intervals, the
maximum transverse Lyapunov exponent can be reduced to a negative value.

Figure 3. Parametrically excited hyperchaos pendulums system (PEHPS). (a) the time evolution
of the angle displacements yr, yd, where the slightly different initial conditions have been taken
as yr(0)=0�01, yd(0)=0�011, _yr�0� � 0, _yd�0� � 0; (b) the phase portrait yr versus yd of the
hyperchaotic attractor; (c) the phase portrait _yr versus _yd of the hyperchaotic attractor. Key: Ð,
yr; � � � �yd.
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Synchronization can then be achieved. Two pendulums in the post-transient
regime will move synchronously as if there were only a single parametrically
excited pendulum driven by an external control force. Figure 4(a) shows the time
evolution of (DZ)2= (yrÿ yd)2+ � _yr ÿ _yd�2, where D=10, e.g., feedback is
active at every tenth sample and the feedback weight (M1, M2)= (0, 0) and (0,
10) respectively. When (M1, M2)= (0, 0), i.e., the feedback weight has not been
imposed on the responser in interval a, then the slight perturbation to initial
conditions is ampli®ed to a large distortion. The two pendulums move
independently and the motion wanders in a high-dimensional phase space of a
hyperchaotic attractor. But when t> 25T, after switching on the feedback (M1,
M2)= (0, 10) in interval b, the difference will decrease to a very small value after
the transient process despite the feedback being imposed at every tenth sample.
The hyperchaotic attractor is constrained into a low-dimensional attractor. The
line yr, yd in Figure 4(b) shows the synchronization of two chaos pendulums
where the maximum transverse Lyapunov exponent ltmax � ÿ0�22.

3. SYNCHRONOUS PARAMETER INTERVALS

The synchronization principle demonstrates that the negative maximum
transverse Lyapunov exponent guarantees the synchronization of two coupled
chaotic systems. It determines the synchronous parameter zone in the feedback
parameter space M±D. Certainly, the larger the area of the synchronous zone is,
the more stable and ef®cient the synchronizing chaos pendulums will become. As
an example, two types of special synchronous interval in the parameter space are
discussed. Figure 5(a) shows the dependence of the maximum transverse
Lyapunov exponent ltmax on the feedback weight M where D=10, and those
curves a, b, c correspond to (M1, M2)= (M, 0), (0, M), (M, M) respectively. The
range M>Mmin in which ltmax is negative de®nes the interval of M where
synchronization can be achieved and �yr ÿ yd�2 � � _yr ÿ _yd�2! 0. Here, the scope
of synchronous interval of M being in the order of curves a, b, c means that the
multivariable feedback control in interval c leads to the most negative ltmax so
that one can perform fast and stable chaos synchronization. Also the

Figure 4. Synchronizing two chaos pendulums. (a) the time evolution of
(DZ)2= (yrÿ yd)2+ � _yr ÿ _yd�2 where D=10, t1=9H, t2=1H, and H=T/200 denotes the time
step of calculation. The feedback weights (M1, M2)= (0, 0), (0, 10) correspond to intervals a, b,
respectively; (b) the synchronization line yr, yd.
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synchronization in interval a is less stable since ltmax approaches zero. In the
synchronous intervals, ltmax�M� has the minimum at M=Mop which leads to the
maximal synchronous rate, i.e., the optimal synchronization. When M<Mop,
the convergence of y associated with _y increases with the increase of feedback
weight so that the synchronous rate increases. However, when M>Mop, the
convergence of _y is incongruous with y for the non-symmetrical feedback
control. The mismatch leads to the decrease in the synchronous rate with the
increase of feedback weight. Therefore there exists an optimal synchronous rate
with M=Mop. The normalized periodic factor D is also an important factor to
in¯uence synchronization. Figure 5(b) shows the relation between ltmax and the
factor D with the ®xed feedback weight M=10. The relation D<Dmax

determines the synchronous intervals of D associated with ltmax < 0. In
particular, one notes that with D=(t1+ t2)/t2=1 (t1=0), the periodic

Figure 5. Synchronous parameter intervals. (a) the dependence of the maximum transverse
Lyapunov exponent ltmax on the feedback weight M with the normalized periodic factor D=10;
Key: ~~~, a; ***, b; ***, c. (b) the relation between ltmax and the factor D with the ®xed
feedback weight M=10. The curves a, b, c correspond to (M1, M2)= (M, 0), (0, M) and (M, M),
respectively. The valuesMmin,Mop,Dop,Dmax of curve c are identi®ed by arrows. Key: a; b; c.
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feedback scheme reduces to the method of small time continuous feedback. Also
the optimal normalized periodic factor Dop can be found in the synchronous
intervals where the convergence of variables matches one another. However,
when the factor D is changed above the threshold value Dmax or the value of M
is taken out of the interval M>Mmin, the external feedback force cannot
suppress the ampli®cation of differences, and thus synchronization fails. After
the transient process, the two tumbling chaos pendulums randomly rotate and
oscillate about the hanging position. PEHPS is reproduced.

4. CONCLUSIONS

In this paper, the synchronization of tumbling chaos of two parametrically
excited pendulums by the periodic feedback synchronization method has been
realized. The synchronization principle has been investigated. To guarantee
synchronization, the feedback control parameter space was discussed. When the
values of the normalized periodic factor and the feedback weight are selected in
the synchronous parameter zone, two disorder and desynchronous tumbling
chaotic pendulums constructing the PEHPS will consistently converge to a single
chaotic behavior. The motion in step of two chaos pendulums has been achieved.
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